
ysics,

PHYSICAL REVIEW E NOVEMBER 2000VOLUME 62, NUMBER 5
Characteristics of the wave function of coupled oscillators in semiquantum chaos

Y. W. Hui, Jinming Dong, and D. Y. Xing
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Nanjing University, Nanjing 210008, People’s Republic of China
~Received 24 March 2000!

Using the method of adiabatic invariants and the Born-Oppenheimer approximation, we have calculated the
ground-state wave function of a pair of coupled oscillators in so-called semiquantum chaos. Some interesting
characteristics, e.g., the similarities and differences between the wave functions in the regular and chaotic
states have been found. Time-correlation functions of the wave functions and their Fourier spectra in two states
have also been investigated. The sensitivity of the wave function in the chaotic state to the initial conditions has
been identified.

PACS number~s!: 05.45.2a, 03.65.Sq
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I. INTRODUCTION

As a topic of research, chaos has long been investigate
classical systems. In comparison with classical chaos in
namic systems, chaos in a quantum system has not
properly defined despite much research work. In fact, fr
the obvious correspondence between classical and qua
mechanics, the classical chaos in some dynamical sys
must have its counterpart in the corresponding quantum
tems. Percival@1# found that under semiclassical approxim
tion, the quantum energy spectrum of anN-dimensional con-
servative system can be divided into two parts, regular
irregular, which relate, respectively, to periodic and chao
motions in the classical phase space. Bohigas@2# and Berry
@3# then developed the approach of energy-level statistic
describe the properties of regular and irregular quantum
ergy spectra. Meanwhile, the studies of morphology
eigenfunctions made by Shapiro@4# and Heller@5# give us
information about regular and irregular states of quant
systems. Recently, there have been some counterpart sys
such as quantum billiards, quantum spin systems and so
found in the field of condensed-matter physics.

We all know that classical chaos is characterized by
sensitivity of the system to the initial conditions~or in math-
ematics, by the positive Lyapunov characteristic expone!.
But in quantum mechanics, nonexistence of the concep
path or trajectory prevents us from studying those irregu
behaviors considered as quantum chaos by using sim
methods in studying classical chaos. Quite a few of th
correspondences have been thoroughly studied and man
proaches, e.g., the random matrix theory, the orbit s
theory and so on, have been discovered to study propertie
these kind of irregular behaviors, or the so-called ‘‘quant
chaos.’’ In these approaches, many researchers have foc
on the concept of integrability in quantum mechanics a
hope to get an exact definition of quantum chaos. Oth
want to find the manifestation of quantum chaos in act
experimental systems.

Cooperet al. @6# considered a system in which a classic
oscillator interacts with a purely quantum-mechanical os
lator. The complete dynamics of the coupled quantum
classical oscillators was described by aclassical effective
Hamiltonian, which is the expectation value of the quantu
PRE 621063-651X/2000/62~5!/6318~7!/$15.00
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Hamiltonian. They found that the effective classical Ham
tonian totally determines the time evolution of the quantu
oscillator, and shows chaotic behavior due to coupling
tween the two oscillators, leading the parameters describ
the quantum-mechanical wave function and expectation
ues to be sensitive to initial conditions. This phenomen
was namedsemiquantum chaosby its discoverers, Cooperet
al. @6#. Faccioli et al. in their comment@7# gave a more
proper treatment for this problem.

Though the proper semiclassical evolution functions
the system have been obtained in their work, both Coopeet
al. and Faccioliet al. have only paid their attention to th
average valueof the time-dependent occupation number
the chaotic state, and thewave functionof the quantum os-
cillator in the coupled system has not been cared for. A
well known, in quantum mechanics the wave function, es
cially the ground-state wave function, can show not only
static but also the dynamical information of the system.
consideration of the above insufficiency, we here will tre
the same coupled system as one in Cooper’s paper@6# that
also consists of a pair of coupled oscillators, one conside
as a classical oscillator and the other a quantum one. H
ever, differing from both of Cooperet al. @6# and Faccioliet
al., @7# we will try to find the ground-statewave functionsof
the system in both chaotic and regular states and then dis
some interesting properties of them in this paper. In Sec
we will describe methods used to calculate the wave fu
tion, i.e., the method of adiabatic invariants@8# and the Born-
Oppenheimer approximation@9–12#. In Sec. III, the wave
function of the quantum system concerned here is obtain
and in Sec. IV, we will discuss evolutional characteristics
the system. Because the evolution functions of the sys
are obtained by the semiclasical treatments used by Co
et al. and Faccioliet al. in their papers, it is not difficult to
choose a chaotic state together with a regular one in orde
compare the differences between the ground-state w
functions of the system in these two states. Finally, we w
end the article with some conclusions in Sec. V.

II. METHOD OF ADIABATIC INVARIANTS

A. General feature

For a system whose Hamiltonian is an explicit function
time, we can assume existence of an explicitly tim
dependent Hermitian invariant operatorI (t), defined as
6318 ©2000 The American Physical Society
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dI

dt
[

]I

]t
1

1

i\
@ I ,H#50. ~1!

We denote the eigenvalues ofI by l, and its orthonormal
eigenstate byul,m&, wherem represents all of the quantum
numbers exceptl.

Then, a new set of eigenvectors ofI (t) related to the
initial set ul,m& can be defined by a time-dependent gau
transformation

ul,m&a5eialm(t)ul,m&, ~2!

where thealm(t) is an arbitrary real function of time. Th
method of adiabatic invariant tells us if the phasesalm(t)
satisfy the following condition:

\
dalm

dt
5^l,mu i\

]

]t
2Hul,m&, ~3!

we can obtain a new set of eigenstates ofI (t),ul,m&a , obey-
ing the Schro¨dinger equation.

B. A time-dependent harmonic oscillator

For certain type of time-dependent harmonic oscillato
their hamiltonian can be written as

H~ t !5
1

2M
@p21V2~ t !q2#, ~4!

whereq is a canonical coordinate,p is its conjugate momen
tum, V(t) is an arbitary, piecewise-continuous function
time, andM is a real, positive mass parameter.

It can be easily found that for Eq.~4!, its corresponding
invariant operatorI (t) is equal to

I ~ t !5
1

2 F 1

r2
q21~M ṙq2rp!2G , ~5!

and the new variantr satisfies

M2r̈1V2r5
1

r3
. ~6!

Time-dependent canonical lowering and raising operatoa
anda† can be introduced as follows:

a5~2\!21/2Fq

r
1 i ~rp2M ṙq!G , ~7!

a†5~2\!21/2Fq

r
2 i ~rp2M ṙq!G , ~8!

which obey the canonical commutation rule@a,a†#51.
Then, the invariantI (t) can be given in terms ofa anda† as
I 5\(a†a1 1

2 ). If the eigenstates and eigenvalues of the o
erator a†a are denoted byus& and s, i.e., a†aus&5sus&,
s50,1,2, . . . , we will have the following relationsaus&
5s1/2us21&,a†us&5(s11)1/2us11&. Thus, the eigenvalue
spectrum of I is given by ls5(s1 1

2 )\,
s50,1,2, . . . .
e

,

-

If we want to get the eigenvalue and eigenstate of
original time-dependent Hamiltonian by means of the inva
ant, we must calculate the factoralm(t) in the gauge trans-
formation. For the eigenstateus&, it can be easily proved tha

alm~ t !5as~ t !52
1

M S s1
1

2D E t

dt8
1

r2~ t8!
. ~9!

III. SEMICLASSICAL DESCRIPTION OF THE COUPLED
HARMONIC OSCILLATORS SYSTEM

In this paper, we mainly deal with a coupled system, co
posed of a classical oscillator and a purely quantum osc
tor, which is described by a Hamiltonian@6#

H5
1

2
p21

1

2
PA

21
1

2
~m21e2A2!x2, ~10!

where p(t)5 ẋ(t) and PA5Ȧ(t). The coordinatesx and A
describe, respectively, the motion of the quantum oscilla
and the classical one in the system. Using the Bo
Oppenheimer approximation, we can decouple the sys
into a classical part and a quantum part, each of which ca
handled easily.

From Hamiltonian~10!, a Schro¨dinger equation for the
system with energyE is obtained

1

2 S 2\2
]2

]x2
1v2x22\2

]2

]A2
22ED CE~x,A!50, ~11!

where v25m21e2A2. After factorizing CE(x,A)
5c(A)x(x,A), and following the treatment in Ref.@7#, i.e.,
using the semiclassical approximation, we obtain the follo
ing coupled equations for thec(A) andx(x,A):

S 1

2
Ȧ21^Ĥx& Dc5Ec ~12!

and

S Ĥx2 i\
]

]t Dxs50, ~13!

where

Ĥx52
1

2 S \2
]2

]x2
1v2x2D , ~14!

x~x,A!5xs~x,A!expF E t

dt8S i

\
^Ĥx&1K ]

]A8
L Ȧ8D G ,

~15!

and the average value of an operator^Ô& is defined as

^Ô&5

E dxx* Ôx

E dxx* x

. ~16!
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FIG. 1. Fourier spectra of the time evolutio
of the probability density,uf(x,G(t))u2, in cha-
otic and regular states.
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Now using the adiabatic invariant method discussed in S
II, it is easy to solve the Schro¨dinger equation, Eq.~13!, for
the quantum part of the system by introducing an adiab
invariant I (t), and the time-dependent canonical loweri
and raising operatorsa anda† in Eq. ~5!, ~7! and~8!. In order
to compare with the paper of Cooperet al. paper, we substi-
tute r in those equations forG, i.e., let r5(2G)1/2

5(2^x2&)1/2. On defining the ground state ofa by au0&50,
we can calculate the average values ofx2, ẋ2, and the Hamil-
tonian Hx . At the same time, the equations ofA and r are
changed into the following form:

Ä52
]

]A
^Ĥx&52\e2AG, ~17!

1

2

G̈

G
2

1

4
S Ġ

G
D 2

2
1

4G2
111e2A250. ~18!

In the coordinate representation, equationau0&50 gets
the form of

S ]

]x
1

12 iĠ

2G
xDf„x,G~ t !…50. ~19!

wheref„x,G(t)… is just the ground-state wave function
I (t), i.e., u0&. We can easily solve Eq.~19! and get its nor-
malized solutionf„x,G(t)…,

f„x,G~ t !…5~2pG!21/4expH 2S 12 iĠ

2G
D x2

2 J . ~20!

Then the solution of Eq.~13! is

xs50~x,t !5~2pG!21/4expH 2
i

4E
t 1

G~ t8!
dt8J

3expH 2S 12 iĠ

2G
D x2

2 J . ~21!

At last, we must point out that the real wave function th
relates to the movement of the quantum part of the syste
x(x,A), given by Eq.~15!. It is easy to prove that the prob
c.

ic

t
is

ability ux(x,A(t)u2 equals to theuf„x,G(t)…u2, and so we
will discuss only the wave functionf„x,G(t)… instead of the
x„x,A(t)….

IV. OBTAINED RESULTS AND DISCUSSION

In this section we will focus on the time evolution of th
quantum part of the system and utilize the obtained w
functions and their Fourier analysis to show the differen
and similarity between the so-called semiquantum cha
state and the regular one. For simplicity, we will use t
units of \51 andm51.0. Given the fixed total energyE
50.8, we here use the initial conditions of Eqs.~17! and~18!
as the following:

~i! Chaotic State: A50.0; G50.5; Ȧ50.0; Ġ
50.774597;e51.0.

~ii ! Regular State: A50.0; G50.35; Ȧ50.0; Ġ
50.731925;e51.0.

These values are, respectively, picked up from the cha
and regular region of the Poincare´ section in the phase spac
which was shown by Cooperet al. @6# in their paper. In order
to safely identify whether the above states are, respectiv
chaotic and regular ones, we have calculated their Lyapu
exponent~LE!. It is found that the LE of the first state i
positive, and that of the second one is zero, demonstra
quantitatively that the first state is indeed chaotic and
second is regular. After getting the values ofA(t) andG(t)
from the coupled equations of motion, we can use Eq.~20! to
calculate the time evolution of the ground-state wave fu
tion in chaotic or regular states for the positionx.

The Fourier spectra~FS! of the longtime evolution of the
probability densityuf„x,G(t)…u2 in chaotic and regular state
are shown in Fig. 1. In it, we find that there exists a series
FS peaks at many frequencies in two states. At the freque
n1

R50.4144 Hz~the superscriptR refers to the regular state!
in the FS of the regular state, we have the maximal FS v
ues. If n1

R is doubled, a peak of FS at 0.8289 Hz can
obtained, and if tripled there exists the peak at 1.2439
and so on. Besides the multiplier frequencies of the fun
mentaln1

R , we can discern some fractional frequencies of
such as atn2

R50.2075 Hz andn3
R50.0537 Hz. Usingn1

R
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FIG. 2. Fourier spectra of
G(t) for different coupling coeffi-
cients.~a! e50.1; ~b! e50.5.
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andn2
R , we can obtain some combined frequencies in the

like 0.6220 Hz and 1.036 Hz. As for other smaller FS co
ponents that appear on two sides of the bigger peaks m
tioned above, we can easily get them through adding or s
tracting the bigger frequencies byn3

R .
Now let us consider the FS of the chaotic state. A

glance of it, we can still distinguish the ‘‘fundamental fr
quency’’ from its FS,n1

C50.4034 Hz~the superscriptC re-
fers to the Chaotic state!. Others such asn2

C50.2020 Hz and
n3

C50.0311 Hz also play important roles in combining t
frequencies in the FS, both of which are also the fractio
frequencies of then1

C in the 2nd and 13th order, respectivel
For example, we can easily find that 0.6055 Hz is the sum
n1

C and n2
C . And at both sides of the main frequenciesnC,

there are also FS peaks atnC6n3
C, but now with unequal

peak heights, which is different from the case of the regu
state. For instance, the FS peak height atn4

C5n1
C2n3

C

'0.3705 is much larger than that at frequencyn5
C5n1

C

1n3
C'0.4364, and even larger than that atn1

C , leading to the
S
-
n-
b-

a

l

f

r

existence of two fundemental frequencies in the chao
state, i.e., then1

C50.4034 andn4
C50.3705. But if we analyze

the FS carefully, we can find it has many differences fro
the regular one. First, there are much more new frequen
appearing in chaotic FS in comparison with the regular o
But their amplitudes are so small that they can hardly
selected out from the FS, which makes the FS curve be
smooth like that in the regular state. Second, the rela
peak amplitudes at the frequencies change greatly. O
ously, the amplitude distribution in the chaotic FS seems
be more even than that in the regular one.

In order to answer the question of where the fundame
frequencies come from, we must investigate the coup
equations of motion for the coordinatesA(t) andG(t), i.e.,
Eqs. ~17! and ~18!. We solve the coupled equations whe
choosing e50.0, e50.1, e50.5, and e51.0. The initial
conditions of the equations are chosen as the same as th
the regular state. It is easy to understand that whene50.0,
A(t) undergoes a uniform motion andG(t) oscillates with
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FIG. 3. Fourier spectra of the
time-correlation functions of
uf(x,G(t))u. ~a! in regular state;
~b! in chaotic state.
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an unique frequency, 0.3183 Hz. Whene changes from zero
to 0.1, the coupled term in the equations plays an impor
role so that the motion of the system, especiallyG(t), devi-
ates from the simple pictures without the coupling. We sh
the FS ofG(t) at the energyE50.8 in Fig. 2 fore50.1 and
e50.5. The FS ofG(t) has many frequencies that lie aroun
the center-frequency 0.404 05 Hz whene50.1. While e
50.5, the FS ofG(t) has less frequencies but still centers
the almost unchanged frequency 0.4016 Hz. By compa
them with their counterpart ofe51.0, we realize that the FS
of G(t) has an intrinsic frequency at about 0.4 Hz fore
Þ0. With the increase ofe, the coupling betweenA(t) and
G(t) increases, causing the combination between the
quencies, which results in appearance of more frequencie
the FS. Now, we know that the fundamental frequencies
nt

t
g

e-
in
n

the FS of the wave functions originate from the coupli
motion of the classical and quantum coordinates. And
pictures of the motion will greatly change when the syst
transforms from uncoupling to coupling.

Now, we study the correlation function of the time
dependent wave function. Given the same initial conditio
we get the time-correlation functions in the chaotic and re
lar state and their FS, respectively. We show the FS resul
Fig. 3, in which the mean value of the FS has been filtered
order to remove the big dc-component in the FS. In the re
lar state@Fig. 3~a!#, the FS of the correlation function i
‘‘clear’’ and it is easy to identify some fundamental freque
cies, e.g., then1

R,n2
R,2n1

R,n1
R1n2

R , etc. But when the system
is in the chaotic state, the FS of the correlation function@Fig.
3~b!# becomes desultory, and it looks to have a lot
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FIG. 4. Sensitivity of the prob-
ability density, uf(x,G(t))u2, to
the initial conditions for different
energies.~a! E50.8; ~b! E51.8.
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‘‘noise’’ components. However, the fundamental frequenc
still exist and other frequencies also appear because
stronger nonlinear coupling effect existing in the chao
state.

Finally, we examine what happens for the sensitivity
the eigenfunctions in the chaotic state to the initial con
tions, which is usually considered as a basic characteristi
chaos. Figure 4 shows related numerical results of the p
ability densityufu2 vs t for the case ofE50.8 @Fig. 4~a!# and
1.8 @Fig. 4~b!#, which have the same initial conditions for a
parameters except that theG(0) has very little difference
between two solutions, which areG(0)50.5 and G(0)
50.5001. We can see from Fig. 4 that there indeed ex
such sensitivity for the eigenfunction, which is infuluenc
by the energyE. For lower energyE50.8, the sensitivity is
much weaker because only after a longer time ('250 sec),
can we identify the difference between twoufu2 with almost
the sameG(0). With E increasing, e.g., forE51.8, the sen-
sitivity becomes more clear and obvious because thro
only a very short time ('28 sec), can two of the curves o
ufu2 show clear difference.
s
a

f
-
of
b-

ts

h

V. CONCLUSIONS

In this paper, we analytically calculate the wave functi
of a quantum oscillator coupled with a classical harmo
oscillator. Instead of using the definition of the classic
chaos, such as the sensitivity of the system to the ini
conditions, we have found some characteristics of the w
function in its time evolution and Fourier spectrum. W
think these characteristics can be used to distinguish
regular and chaotic states when there emerges the so-c
semiquantum chaos in the system. Our result can be tho
of as another way that is accessible to understanding
semiquantum chaos.
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