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Characteristics of the wave function of coupled oscillators in semiquantum chaos
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Using the method of adiabatic invariants and the Born-Oppenheimer approximation, we have calculated the
ground-state wave function of a pair of coupled oscillators in so-called semiquantum chaos. Some interesting
characteristics, e.g., the similarities and differences between the wave functions in the regular and chaotic
states have been found. Time-correlation functions of the wave functions and their Fourier spectra in two states
have also been investigated. The sensitivity of the wave function in the chaotic state to the initial conditions has
been identified.

PACS numbdis): 05.45~a, 03.65.Sq

[. INTRODUCTION Hamiltonian. They found that the effective classical Hamil-

tonian totally determines the time evolution of the quantum

As a topic of research, chaos has long been investigated ipscillator, and shows chaotic behavior due to coupling be-
classical systems. In comparison with classical chaos in dyween the two oscillators, leading the parameters describing
namic systems, chaos in a quantum system has not bedff quantum-mechanical wave function and expectation val-
properly defined despite much research work. In fact, fromes to be sensitive to initial conditions. This phenomenon

the obvious correspondence between classical and quantuﬁ?s hamedsiemiquantum chadsy its discoverers, Coopet

mechanics, the classical chaos in some dynamical systenﬁ [6]. Faccioli et al in their commen(7] gave a more

i ) d oper treatment for this problem.
must have its counterpart in the corresponding quantum sys- 0 the proper semiclassical evolution functions of

tgms. Percival1l] found that under semmlgssmall approxima- ihe system have been obtained in their work, both Coeper
tion, the quantum energy spectrum offérimensional con- 5| " and Faccioliet al. have only paid their attention to the
servative system can be divided into two parts, regular angyerage valueof the time-dependent occupation number in
irregular, which relate, respectively, to periodic and chaoticthe chaotic state, and theave functionof the quantum os-
motions in the classical phase space. Bohi@dsand Berry  cillator in the coupled system has not been cared for. As is
[3] then developed the approach of energy-level statistics tvell known, in quantum mechanics the wave function, espe-
describe the properties of regular and irregular quantum ereially the ground-state wave function, can show not only the
ergy spectra. Meanwhile, the studies of morphology ofstatic but also the dynamical information of the system. In
eigenfunctions made by Shapifd] and Heller[5] give us  consideration of the above insufficiency, we here will treat
information about regular and irregular states of quantunthe same coupled system as one in Cooper’s pgglethat
systems. Recently, there have been some counterpart systeaiso consists of a pair of coupled oscillators, one considered
such as quantum billiards, quantum spin systems and so of$ a classical oscillator and the other a quantum one. How-
found in the field of condensed-matter physics. ever, differing from both of Coopest al. [6] and Faccioliet

We all know that classical chaos is characterized by thel., [7] we will try to find the ground-stateave function®f
sensitivity of the system to the initial conditiofsr in math- the system in both chaotl.c and regula_r states and then discuss
ematics, by the positive Lyapunov characteristic exponent SOMe, interesting properties of them in this paper. In Sec. Il
But in quantum mechanics, nonexistence of the concept o’ will describe methods used to calculate the wave func-

: : . lon, i.e., the method of adiabatic invariah® and the Born-
path or trajectory prevents us from studying those 'rregmaFQppenheimer approximatiofg—12]. In Sec. IIl, the wave

behaviors considered as guantum chaos by using Slmllé}unction of the quantum system concerned here is obtained,;

methods in studying classical chaos. Qu'te. a few of thes%md in Sec. IV, we will discuss evolutional characteristics of
correspondences have been thoroqghly studied and many e system. Because the evolution functions of the system
proaches, e.g., the random matrix theory, the orbit SCaLre obtained by the semiclasical treatments used by Cooper
theory and so on, have been discovered to study properties QE al. and Faccioliet al. in their papers, it is not difficult to
these kind of irregular behaviors, or the so-called “quantumchase a chaotic state together with a regular one in order to
chaos.” In these approaches, many researchers have focusgsinpare the differences between the ground-state wave

on the concept of integrability in quantum mechanics andynctions of the system in these two states. Finally, we will
hope to get an exact definition of quantum chaos. Othergnd the article with some conclusions in Sec. V.

want to find the manifestation of quantum chaos in actual

experimental systems. Il. METHOD OF ADIABATIC INVARIANTS
Cooperet al.[6] considered a system in which a classical

oscillator interacts with a purely quantum-mechanical oscil-

lator. The complete dynamics of the coupled quantum and For a system whose Hamiltonian is an explicit function of

classical oscillators was described byckssical effective time, we can assume existence of an explicitly time-

Hamiltonian which is the expectation value of the quantum dependent Hermitian invariant operatdt), defined as

A. General feature
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We denote the eigenvalues bfby \, and its orthonormal
eigenstate by\,u), whereu represents all of the quantum
numbers except.

Then, a new set of eigenvectors bft) related to the
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If we want to get the eigenvalue and eigenstate of the
original time-dependent Hamiltonian by means of the invari-
ant, we must calculate the factay ,(t) in the gauge trans-
formation. For the eigenstats), it can be easily proved that
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initial set|\,u) can be defined by a time-dependent gauge

transformation

IN ) o=\, ), 2

where thea, ,(t) is an arbitrary real function of time. The
method of adiabatic invariant tells us if the phasgg,(t)
satisfy the following condition:

da)\ﬂ

h=qr =

P
(\oulif = —HIN, ), 3

we can obtain a new set of eigenstates$(of,|\,u),, obey-
ing the Schrdinger equation.

B. A time-dependent harmonic oscillator

Ill. SEMICLASSICAL DESCRIPTION OF THE COUPLED
HARMONIC OSCILLATORS SYSTEM

In this paper, we mainly deal with a coupled system, com-
posed of a classical oscillator and a purely quantum oscilla-
tor, which is described by a Hamiltonid6]

1
=(m?+e?A?)x?,

1
2
T4+
HA2

H—1 24
L

(10

where p(t)=x(t) andII,=A(t). The coordinatex and A

describe, respectively, the motion of the quantum oscillator
and the classical one in the system. Using the Born-
Oppenheimer approximation, we can decouple the system
into a classical part and a quantum part, each of which can be

For certain type of time-dependent harmonic oscillatorsy, 2 qjeq easily

their hamiltonian can be written as
H(t)= i[|02+ 0%4(t)g?] (4)
2M ’

whereq is a canonical coordinate,is its conjugate momen-

tum, Q(t) is an arbitary, piecewise-continuous function of

time, andM is a real, positive mass parameter.
It can be easily found that for E@4), its corresponding
invariant operatoi(t) is equal to

111 2 . 2
[(H)=5| 5"+ (Mpa—pp)?|, (5)
p
and the new varianp satisfies
. 1
M2p+(22p=—3. (6)
p

Time-dependent canonical lowering and raising operadors
anda' can be introduced as follows:

a=(2ﬁ)_1/z[g+i(pp—MbQ)} ()

aT:(Zh)flIZ

%—upp—Mbq) , ®

which obey the canonical commutation ruja,a’]=1.
Then, the invariank(t) can be given in terms af anda' as

I=f(a’a+3). If the eigenstates and eigenvalues of the op

erator a'a are denoted bys) and s, i.e., a'a|s)=s|s),

s=0,1,2..., we will have the following relationsals)
=s'%s—1),a's)=(s+1)Y4s+1). Thus, the eigenvalue
spectrum of | is given by A=(s+3)A,
s=0,1,2....

From Hamiltonian(10), a Schradlinger equation for the
system with energ¥ is obtained

% Ye(x,A)=0, (11

3? 3
—h2— + wP—h?>— —2E
NG A2

where w?=m?+e?A2.  After factorizing Wg(x,A)
=y(A) x(x,A), and following the treatment in Ref7], i.e.,
using the semiclassical approximation, we obtain the follow-
ing coupled equations for thg(A) and y(x,A):

1. -
(§A2+<Hx>)w=E¢ (12)
and
[Ain g
HX—IﬁE Xs 0, (13)
where
. 1 92
HX:—E(ﬁZE_l_wZXZ)' (14)
(X,A)= (xA)ex;{jtdtf i_<|:| )+ 7 Ar”
e AT oA !
(19

and the average value of an operatt is defined as

f dxy* Oy

(0)= (16)

deX*x
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Now using the adiabatic inyariant method discussed in Seability |y(x,A(t)|? equals to thd ¢(x,G(t))|?, and so we
Il, it is easy to solve the Schdinger equation, Eq13), for i discuss only the wave functior(x,G(t)) instead of the
the quantum part of the system by introducing an adlabatlg((X,A(t))_

invariant I (t), and the time-dependent canonical lowering

and raising operatoanda’ in Eq.(5), (7) and(8). In order

to compare with the paper of Coopetral. paper, we substi- IV. OBTAINED RESULTS AND DISCUSSION

tute P, mllzthose equations forG, i.e., let p=(26)"" In this section we will focus on the time evolution of the

=(2(x%))™*. On defining the ground St‘?“e afby a|0)=0, quantum part of the system and utilize the obtained wave
we can calculate the average valuesfx®, and the Hamil-  functions and their Fourier analysis to show the difference
tonianH, . At the same time, the equations Afandp are  and similarity between the so-called semiquantum chaotic

changed into the following form: state and the regular one. For simplicity, we will use the
units of A~=1 andm=1.0. Given the fixed total energy
A=— i<ﬂx>: —he?AG, (17y  =0.8, we here use the initial conditions of E¢k7) and(18)
IA as the following:
L& 1612 1 (i) Chaotic State: A=0.0; G=0.5; A=0.0; G
-2 _(_) T i 1+e?Al—p. (1g —0-774597,=10. _ |
2G 4\G] 4G? (i) Regular State: A=0.0; G=0.35; A=0.0; G

=0.731925;e=1.0.
In the coordinate representation, equat@i®)=0 gets

the form of These values are, respectively, picked up from the chaotic
121G and regular region of the Poincasection in the phase space,
(i + —! x) #(x,G(t))=0. (19) which was sho_wn by Coopet al. [6] in their paper. In orde_r
x  2G to safely identify whether the above states are, respectively,

o ) chaotic and regular ones, we have calculated their Lyapunov
where $(x,G(t)) is just the ground-state wave function of gxhonent(LE). It is found that the LE of the first state is

I(t), i.e.,[0). We can easily solve Eq19) and get its nor-  positive, and that of the second one is zero, demonstrating
malized solutiong(x,G(t)), quantitatively that the first state is indeed chaotic and the
1-i6\ 2 second is regular. After getting the valuesAfft) and G(t)
_ —1/a = A from the coupled equations of motion, we can use(E@). to
$x,G(1)=(27G) exp{ ( 2G ) 2 ] (20 calculate the time evolution of the ground-state wave func-
tion in chaotic or regular states for the position
Then the solution of Eq(13) is The Fourier spectréFS) of the longtime evolution of the
probability density ¢(x,G(t))|? in chaotic and regular states

B 1 el , are shown in Fig. 1. In it, we find that there exists a series of
Xs=o(X,1)=(27G) " "exp — Zf G(t') dt FS peaks at many frequencies in two states. At the frequency
vRX=0.4144 Hz(the superscripR refers to the regular state
1-iG | x2 in the FS of the regular state, we have the maximal FS val-
xexp —| 55| 5 (2D ues. If 1} is doubled, a peak of FS at 0.8289 Hz can be

obtained, and if tripled there exists the peak at 1.2439 Hz,
At last, we must point out that the real wave function thatand so on. Besides the multiplier frequencies of the funda-
relates to the movement of the quantum part of the system igientalv§, we can discern some fractional frequencies of it,
x(x,A), given by Eq.(15). It is easy to prove that the prob- such as aw§=0.2075 Hz andv§=0.0537 Hz. Usingv{
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andv¥, we can obtain some combined frequencies in the F@xistence of two fundemental frequencies in the chaotic
like 0.6220 Hz and 1.036 Hz. As for other smaller FS com-state, i.e., the’{=0.4034 and/$=0.3705. But if we analyze
ponents that appear on two sides of the bigger peaks mefhe FS carefully, we can find it has many differences from
tioned above, we can easily get them through adding or sulthe regular one. First, there are much more new frequencies
tracting the bigger frequencies by . appearing in chaotic FS in comparison with the regular one.
Now let us consider the FS of the chaotic state. At aBut their amplitudes are so small that they can hardly be
glance of it, we can still distinguish the “fundamental fre- selected out from the FS, which makes the FS curve be not
quency” from its FS,vT=0.4034 Hz(the superscrip€ re-  smooth like that in the regular state. Second, the relative
fers to the Chaotic stateOthers such asy=0.2020 Hzand peak amplitudes at the frequencies change greatly. Obvi-
=0.0311 Hz also play important roles in combining the ously, the amplitude distribution in the chaotic FS seems to
frequenaes in the FS, both of which are also the fractionabe more even than that in the regular one.
frequencies of the in the 2nd and 13th order, respectively.  In order to answer the question of where the fundamental
FOf example we can easily find that 0.6055 Hz is the sum ofrequencies come from, we must investigate the coupled
v$ and vS. And at both sides of the main frequencie, equations of motion for the coordinaté¢t) andG(t), i.e.,
there are also FS peaks at+ »$ vy, but now with unequal Egs. (17) and (18). We solve the coupled equations when
peak heights, which is different from the case of the regulachoosinge=0.0, e=0.1, e=0.5, ande=1.0. The initial
state. For instance, the FS peak height vt=v$— vg conditions of the equations are chosen as the same as that of
~0.3705 is much larger than that at frequenc§=v$  the regular state. It is easy to understand that wée.0,
+v5~0.4364, and even larger than thavét, leading to the ~ A(t) undergoes a uniform motion ar@(t) oscillates with
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an unique frequency, 0.3183 Hz. Whechanges from zero the FS of the wave functions originate from the coupling
to 0.1, the coupled term in the equations plays an importannotion of the classical and quantum coordinates. And the
role so that the motion of the system, especid@lit), devi-  pictures of the motion will greatly change when the system
ates from the simple pictures without the coupling. We showtransforms from uncoupling to coupling.

the FS ofG(t) at the energfe=0.8 in Fig. 2 fore=0.1 and Now, we study the correlation function of the time-
e=0.5. The FS of5(t) has many frequencies that lie around dependent wave function. Given the same initial conditions,
the center-frequency 0.40405 Hz whes0.1. While e  we get the time-correlation functions in the chaotic and regu-
=0.5, the FS ofG(t) has less frequencies but still centers atlar state and their FS, respectively. We show the FS results in
the almost unchanged frequency 0.4016 Hz. By comparingrig. 3, in which the mean value of the FS has been filtered in
them with their counterpart af=1.0, we realize that the FS order to remove the big dc-component in the FS. In the regu-
of G(t) has an intrinsic frequency at about 0.4 Hz for lar state[Fig. 3@], the FS of the correlation function is
#0. With the increase of, the coupling betweeA(t) and  “clear” and it is easy to identify some fundamental frequen-
G(t) increases, causing the combination between the fresies, e.g., the'§,v5, 2%, b2+ 17, etc. But when the system
guencies, which results in appearance of more frequencies is in the chaotic state, the FS of the correlation funciieig.

the FS. Now, we know that the fundamental frequencies ir8(b)] becomes desultory, and it looks to have a lot of
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“noise” components. However, the fundamental frequencies V. CONCLUSIONS

still exist and other frequencies also appear because of a
stronger nonlinear coupling effect existing in the chaotic |n this paper, we analytically calculate the wave function
state. _ o of a quantum oscillator coupled with a classical harmonic
Finally, we examine what happens for the sensitivity of oqjjiator. Instead of using the definition of the classical
the eigenfunctions in the chaotic state to the initial Cond"(%haos, such as the sensitivity of the system to the initial
0

tions, which is usually considered as a basic characteristic onditions. we have found some characteristics of the wave
chaos. Figure 4 shows related numerical results of the probc— o . :
function in its time evolution and Fourier spectrum. We

ability density| ¢|? vst for the case oE =0.8[Fig. 4a)] and ; o S
1.8[Fig. 4b)], which have the same initial conditions for all think these chara_cterlstlcs can be used to distinguish the
parameters except that tt@(0) has very little difference regular and chaotic states when there emerges the so-called

between two solutions, which ar&(0)=0.5 and G(0) semiquantum chaos in the system. Our result can be thought

—0.5001. We can see from Fig. 4 that there indeed exist@f as another way that is accessible to understanding the
such sensitivity for the eigenfunction, which is infuluenced S€miquantum chaos.

by the energyE. For lower energye=0.8, the sensitivity is

much weaker because only after a longer time260 sec),

can we identify the difference between tiwo|? with almost

the sameG(0). With E increasing, e.g., foE=1.8, the sen- ACKNOWLEDGMENTS
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